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Alzheimer's disease (AD) is the leading cause of dementia in
the elderly, affecting almost 15 million peoplé defining feature
of AD is the post-mortem observation of extracellular proteinaceous
plagues composed predominantly of the amyloid-bef?) (feptide.

In addition to A3, the redox-active metal ions iron and copper are
found in AD plagqueg;® suggesting that these metal ions are involved
in AD etiology# Copper is particularly significant because it is
implicated in other amyloidosisand its misregulation results in
neuropathology associated with Menkes and Wilson’s disé€ases.
Because the coordination environment is an important determinant
of copper reactivity, work to establish the copper binding site in
ApB and the reactivity of Cu/f complexe$ are central to
understanding copper’s role in AD.

Initial studies of Cu(ll) with AS identified a square planar
coordination site dominated by ligands with nitrogen donor atbms.
The identities of the ligands involved in Cu(ll) binding is
controversiaf~12 but previous in vitro experimental evidence at
pH 7.0-7.4 points to nitrogen ligation from histidine residues
and/or the amino terminds12 The full-length peptide (£40) and
C-terminal truncated versions &8 and AG316) all bind a high-
affinity Cu(ll) ion in the same coordination environménf.
However, unlike 4840 and A328, A316 does not fibrillize, making
it a useful model for high-resolution spectroscopic work on the
Cu(ll) coordination environment.

We have shown previously that N-terminal deletions to the
human AS peptide disrupt the native high-affinity Cu(Il) binding
site? Here, we present low-temperature EPR spectra of Cu(ll)
bound to N-terminal mutants of humarBA6 as a means to assess
the role these amino acids play in creating the Cu(ll) binding site.
Figure 1 shows EPR spectra of Cu(ll) bound to humgii®and
the mutant A16D1N. The EPR spectrum of Cu(ll) bound to the
ABL16E3Q mutant (Supporting Information, Figure S1) is the same
as that of Cu(ll) bound to A40.213showing that the E3Q mutation
has no effect on the Cu(ll) binding site. Unlike the E3Q mutant,
the EPR spectrum of Cu(ll) bound to the D1N mutant is drastically
different from Cu(ll) bound to wild-type peptide (Figures 1 and
S1). At pH 7.2, the EPR spectrum of Cu(ll) bound t81%6D1N
shows two distinct sets of hyperfine peaks indicating the presence
of two copper species (components | and Il). Component II4)as
andg values of 156+ 1 G and 2.226, respectively; component |
hasA; andg values of 170+ 2 G and 2.264. The parameters of
the two components in the EPR spectrum of Cu(ll) bound to
ApBL16DI1N are identical to those for Cu(ll) bound to thg2A16
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Figure 1. pH dependence of low-temperature EPR spectra of ;A0

Cu(ll) bound to 100uM (A) human A316 [DAEFRHDSGYEVHHQK]

and (B) A316D1N. Samples are in 50 mM NaPi, 75 mM NaCl pH 7.2
buffer with 50% glycerol (v/v). EPR conditions: temperature20 K,
frequency= 9.38 GHz, field center= 3100 G, scan width= 1000 G,
modulation amplitude= 10 G, modulation frequency= 100 kHz,
microwave power 0.5 mW, number of scarrs 8. Solid and dashed lines
show the alignment of the hyperfine peaks. Insets are the relative amounts
of simulated component spectra (see Supporting Information).

values (Figure 1A inset). In contrast, spectra of Cu(ll) bound to
Ap16DIN are much more pH dependent (Figure 1B). As the pH
increases, component Il dominates (Figure 1B inset).

Amino acids participate in creating a metal ion binding site by
either directly ligating the metal ion or participating in hydrogen
bonding interactions at the sitéWe propose that the carboxylate

mutant?14suggesting that the same two species are present. Theseside chain of D1 participates in a hydrogen-bond that stabilizes
results further underscore the assertion that D1 plays an importantthe component | coordination mode of Cu(ll) at physiological pH

role in creating the native Cu(ll) binding sité%15

The pH dependence of Cu(ll) bound t@26 or A516D1N was
investigated to determine if component Il in the DIN mutant
spectrum was sensitive to pH (Figure'§)The Cu(ll) EPR spectra
for AB16 are very similar at all of these pH values (Figure 1A)

(Figure 2). This role for D1 has not been proposed previously. In
our model, the two component EPR spectrum observed with the
ApB16DIN mutant (or the A2-16 peptidel represents two Cu(ll)

species, one with the hydrogen bonding interaction intact (com-
ponent I) and the other in which it has been changed or removed

and the dominant species is the same at the highest and lowest pHentirely (component II). A shift in the i, of the relevant proton
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(0] (o) bonding interactions to stabilize the native binding site and not via
direct equatorial ligation to Cu(ll) in A Many models of Cu(ll)
with peptides do not include hydrogen-bonding interactions as

-O‘ -0 critical components of the copper binding site. our view, models
Y n+ (n-1)+ that neglect secondary coordination sphere effects have the potential
[ CuHL ] : [ CuL ] +H to misdirect work on the chemical role(s) of metal ions in vivo.
Figure 2. Role of the carboxylate group of D1 in Cu(ll) binding tg8A Acknowledgment. This research was supported in part by the
CuHL and Cul are the dominant forms offA6 at pH~ 7.0 and 8.0, ~ American Health Assistance Foundation (Grant A2003-227).

respectively? In wild-type peptide, only the CuHL form is observed at - - .
pH 7.2. When the D1 carboxylate is removed or mutated, Kygop CuHL Acknowledgment is also made to Mark Nilges and the lllinois EPR
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Supporting Information Available: Low-temperature Cu(ll) EPR
spectra of 8 mutants, simulations and fits of experimental EPR spectra,
and the titration curve to determine pH. This material is available free
of charge via the Internet at http:/pubs.acs.org.
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